Efecto de la densidad de fibras en las propiedades mecánicas de materiales compuestos reforzados textiles

Autores/as

  • Carlos Rolando Ríos-Soberanis Instituto Tecnológico Nacional de México
  • Mayra Pacheco Cardín Instituto Tecnológico Nacional de México
  • Jorge Carlos Canto Pinto Instituto Tecnológico Nacional de México
  • Emilio Pérez Pacheco Instituto Tecnológico Nacional de México

DOI:

https://doi.org/10.29105/mdi.v10i16.299

Palabras clave:

Materiales Compuestos, Textiles, Caracterización Mecánica

Resumen

La relación entre la geometría del entramado y la densidad lineal de las fibras con los mecanismos de fractura bajo cargas de tensión ha sido investigada para materiales compuestos reforzados con textiles de fibra de vidrio (NCF) de configuración de [-45º, +45º] y diferente densidad lineal basados en una matriz de resina epóxica curada con agente de curado a altas temperaturas. Dos textiles de diferente densidad lineal fueron empleados como refuerzo (440 ± 5% and 227 ± 5% g/m2). El sistema polimérico empleado como matriz en este trabajo consistió en una resina epóxica bifuncional, diglycidyl ether de bisphenol A (DGEBA), curado con una amina tetrafuncional, diaminodiphenyl sulfona (DDS). Este sistema asegura la obtención de un material rígido con excelentes propiedades mecánicas a fin de lograr la observación y analizar e identificar el proceso y la progresión del daño generado así como los mecanismos de fractura que llevan al material a la falla total. El efecto de la arquitectura/geometría del textil y la diferencia de densidades fueron correlacionadas con el comportamiento mecánico identificándose sitios de concentración de esfuerzos y de inicio de los procesos de fractura al analizar los materiales en modo de tensión, flexión y ensayos de esfuerzos cortantes (Iosipescu).

Biografía del autor/a

Carlos Rolando Ríos-Soberanis, Instituto Tecnológico Nacional de México

Profesor Investigador Titular C, Centro de Investigación Científica de Yucatán, A.C, Unidad de Materiales.

Mayra Pacheco Cardín, Instituto Tecnológico Nacional de México

Profesora de Tiempo Completo, Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní, Ingeniería Industrial. 

Jorge Carlos Canto Pinto, Instituto Tecnológico Nacional de México

Profesor de Tiempo Completo, Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní, Cuerpo Académico Bioprocesos. 

Emilio Pérez Pacheco, Instituto Tecnológico Nacional de México

Profesor de Tiempo Completo, Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní, Cuerpo Académico Bioprocesos. 

Citas

Arredondo Bernal, J. E. (2017). Elaboración y caracterización de materiales compuestos basados en óxido de circonio estabilizados con cerio y calcio. Universitat Politècnica de Catalunya,

Batch, G. L., Cumiskey, S., & Macosko, C. W. (2002). Compaction of fiber reinforcements. Polymer Composites, 23(3), 307-318. doi:https://doi.org/10.1002/pc.10433 DOI: https://doi.org/10.1002/pc.10433

Beier, U., Fischer, F., Sandler, J. K. W., Altstädt, V., Weimer, C., & Buchs, W. (2007). Mechanical performance of carbon fibre-reinforced composites based on stitched preforms. Composites Part A: Applied Science and Manufacturing, 38(7), 1655-1663. doi:https://doi.org/10.1016/j.compositesa.2007.02.007 DOI: https://doi.org/10.1016/j.compositesa.2007.02.007

Böhm, R., Gude, M., & Hufenbach, W. (2010). A phenomenologically based damage model for textile composites with crimped reinforcement. Composites Science and Technology, 70(1), 81-87. doi:https://doi.org/10.1016/j.compscitech.2009.09.008 DOI: https://doi.org/10.1016/j.compscitech.2009.09.008

Böhm, R., Gude, M., & Hufenbach, W. (2011). A phenomenologically based damage model for 2D and 3Dtextile composites with non-crimp reinforcement. Materials & Design, 32(5), 2532-2544. doi:https://doi.org/10.1016/j.matdes.2011.01.049 DOI: https://doi.org/10.1016/j.matdes.2011.01.049

Colorado, H. A., CHAVES ROLDÁN, C., & VÉLEZ, J. (2006). Fricción interna y comportamiento anelástico en sólidos. Dyna, 73(148), 39-49.

De Carvalho, N. V., Pinho, S. T., & Robinson, P. (2011). An experimental study of failure initiation and propagation in 2D woven composites under compression. Composites Science and Technology, 71(10), 1316-1325. doi:https://doi.org/10.1016/j.compscitech.2011.04.019 DOI: https://doi.org/10.1016/j.compscitech.2011.04.019

Gu, H. (2007). Tensile behaviours of woven fabrics and laminates. Materials & Design, 28(2), 704-707. doi:https://doi.org/10.1016/j.matdes.2005.07.006 DOI: https://doi.org/10.1016/j.matdes.2005.07.006

Hallal, A., Younes, R., Fardoun, F., & Nehme, S. (2012). Improved analytical model to predict the effective elastic properties of 2.5D interlock woven fabrics composite. Composite Structures, 94(10), 3009-3028. doi:https://doi.org/10.1016/j.compstruct.2012.03.019 DOI: https://doi.org/10.1016/j.compstruct.2012.03.019

Kim, H. S., Pourdeyhimi, B., Abhiraman, A., & Desai, P. (2000). Characterization of structural changes in nonwoven fabrics during load-deformation experiments. Journal of Textile and Apparel, Technology and Management, 1(1), 1-6.

Kuo, W.-S., Ko, T.-H., & Chen, C.-P. (2007). Effect of weaving processes on compressive behavior of 3D woven composites. Composites Part A: Applied Science and Manufacturing, 38(2), 555-565. doi:https://doi.org/10.1016/j.compositesa.2006.02.025 DOI: https://doi.org/10.1016/j.compositesa.2006.02.025

Mahadik, Y., Brown, K. A. R., & Hallett, S. R. (2010). Characterisation of 3D woven composite internal architecture and effect of compaction. Composites Part A: Applied Science and Manufacturing, 41(7), 872-880. doi:https://doi.org/10.1016/j.compositesa.2010.02.019 DOI: https://doi.org/10.1016/j.compositesa.2010.02.019

Marsden, W., Boniface, L., Ogin, S., & Smith, P. Quantifying Damage in Woven Glass Fibre/Epoxy Laminates. Proceedings FRC, 94, 31.

Ratna, D., Chongdar, T. K., & Chakraborty, B. C. (2004). Mechanical characterization of new glass fiber reinforced epoxy composites. Polymer Composites, 25(2), 165-171. doi:https://doi.org/10.1002/pc.20013 DOI: https://doi.org/10.1002/pc.20013

Ravi, S., Iyengar, N. G. R., Kishore, N. N., & Shukla, A. (2000). Influence of fiber volume fraction on dynamic damage in woven glass fabric composites: An experimental study. Advanced Composite Materials, 9(4), 319-334. doi:10.1163/15685510052000138 DOI: https://doi.org/10.1163/15685510052000138

Scardino, F. (1989). An Introduction to Textile Structures and Their Behavior. Textile Structural Composites, Composite Materials series Vol. 3, eds. Chou TW and Ko FK. In: Elsevier.

Van Paepegem, W., & Degrieck, J. (2001). Fatigue degradation modelling of plain woven glass/epoxy composites. Composites Part A: Applied Science and Manufacturing, 32(10), 1433-1441. doi:https://doi.org/10.1016/S1359-835X(01)00042-2 DOI: https://doi.org/10.1016/S1359-835X(01)00042-2

Wan, Y. Z., Wang, Y. L., Luo, H. L., Dong, X. H., & Cheng, G. X. (2001). Comparison of mechanical performance and fracture behavior of gelatin composites reinforced with carbon fibers of different fiber architectures. Polymer Composites, 22(1), 111-117. doi:https://doi.org/10.1002/pc.10523 DOI: https://doi.org/10.1002/pc.10523

Wang, Y. (2002). Mechanical Properties of Stitched Multiaxial Fabric Reinforced Composites From Mannual Layup Process. Applied Composite Materials, 9(2), 81-97. doi:10.1023/A:1013881422106 DOI: https://doi.org/10.1023/A:1013881422106

Wen, C., & Yazdani, S. (2008). Anisotropic damage model for woven fabric composites during tension–tension fatigue. Composite Structures, 82(1), 127-131. doi:https://doi.org/10.1016/j.compstruct.2007.01.003 DOI: https://doi.org/10.1016/j.compstruct.2007.01.003

Descargas

Publicado

2023-12-19

Cómo citar

Ríos-Soberanis, C. R., Pacheco Cardín, M., Canto Pinto, J. C., & Pérez Pacheco, E. (2023). Efecto de la densidad de fibras en las propiedades mecánicas de materiales compuestos reforzados textiles. Multidisciplinas De La Ingeniería, 10(16), 69–80. https://doi.org/10.29105/mdi.v10i16.299