Recurrence and complexity analysis: from engineering signals to continuous improvement in manufacturing processes

Authors

  • Daniel Enrique Rivas Cisneros Universidad Autónoma de Nuevo León image/svg+xml
  • Andrés Eduardo Rivas Cisneros Universidad Autónoma de Nuevo León image/svg+xml

DOI:

https://doi.org/10.29105/mdi.v13i22.343

Keywords:

Recurrence analysis, dynamical systems, processes, continuous improvement

Abstract

This work explores the application of recurrence analysis as a tool to evaluate complexity, stability, and predictability in engineering signals and manufacturing processes. Two case studies were implemented: (i) a motor under two conditions—without vibration and with induced vibration; and (ii) a simulated production process in two scenarios—without continuous improvement and with continuous improvement. The methodology consisted of generating time series, reconstructing trajectories in phase space, and computing recurrence plots along with their quantitative metrics. The results show that ordered and predictable systems (without vibration, with continuous improvement) are characterized by higher determinism and longer diagonal structures, while disordered systems (with vibration, without continuous improvement) exhibit lower determinism and shorter diagonals. These findings highlight the potential of this methodology to provide a quantitative perspective in both physical engineering systems and organizational processes, offering a valuable tool for diagnosis and decision-making in the context of manufacturing and continuous improvement.

Author Biographies

Daniel Enrique Rivas Cisneros , Universidad Autónoma de Nuevo León

Doctor en Ingeniería Eléctrica, Maestría en Ciencias de la Ingeniería con Orientación en Control Automático y Licenciatura en Ingeniería en Electrónica y Automatización.  Profesor de la Preparatoria 9 de La UANL. E-mail: drivasc@uanl.edu.mx  https://orcid.org/0000-0002-3078-4913

Andrés Eduardo Rivas Cisneros, Universidad Autónoma de Nuevo León

Doctor en Educación, Maestría en Administración Industrial y de Negocios con Orientación en Relaciones Industriales, Profesor de tiempo completo de la Universidad Autónoma de Nuevo León, E-mail: arivasc@uanl.edu.mx   https://orcid.org/0009-0004-2243-8991

References

Webber, C. & Marwan, N. (2015). Recurrence quantification analysis: Theory and best practices. Springer. https://doi.org/10.1007/978-3-319-07155-8

Eckmann, J.-P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 4(9), 973–977. https://doi.org/10.1209/0295-5075/4/9/004

Marwan, N., Romano, M. C., Thiel, M., & Kurths, J. (2007). Recurrence plots for the analysis of complex systems. Physics Reports, 438(5), 237–329. https://doi.org/10.1016/j.physrep.2006.11.001

Rysak, A., Sedlmayr, M., & Gregorczyk, M. (2022). Revealing fractionality in the Rössler system by recurrence quantification analysis. The European Physical Journal Special Topics, 232, 1–16. https://doi.org/10.1140/epjs/s11734-022-00740-1

Zou, Y., Thiel, M., Romano, M., Read, P., & Kurths, J. (2008). Recurrence analysis of quasiperiodicity in experimental fluid data. The European Physical Journal Special Topics, 164, 23–33. https://doi.org/10.1140/epjst/e2008-00831-7

Suresha, S., Sujith, R., Emerson, B., & Lieuwen, T. (2016). Nonlinear dynamics and intermittency in a turbulent reacting wake with density ratio as bifurcation parameter. Physical Review E, 94(4), 042206. https://doi.org/10.1103/PhysRevE.94.042206

Syta, A., Jonak, J., Jedliński, Ł., & Litak, G. (2012). Failure diagnosis of a gear box by recurrences. Journal of Vibration and Acoustics, 134(4), 041009. https://doi.org/10.1115/1.4005846

Rivas, D. E. (2023). Use of recurrence plots to find mutations in deoxyribonucleic acid sequences. Complex Systems, 32(1), 89–100. https://doi.org/10.25088/ComplexSystems.32.1.89

Published

2025-11-09

How to Cite

Rivas Cisneros , D. E., & Rivas Cisneros, A. E. (2025). Recurrence and complexity analysis: from engineering signals to continuous improvement in manufacturing processes. Multidisciplinas De La Ingeniería, 13(22), 120–128. https://doi.org/10.29105/mdi.v13i22.343