Optimization and characterization of PLA biocomposites with fibers of Elaeis guineensis

Authors

  • Emilio Pérez Pacheco Universidad Modelo image/svg+xml
  • Carlos Rolando Ríos Soberanis Centro de Investigación Científica de Yucatán
  • Olivia Guadalupe Ortiz Cel Tecnológico Nacional de México image/svg+xml

DOI:

https://doi.org/10.29105/mdi.v13i22.334

Keywords:

Biocomposites, Polylactic acid, African palm rachis fiber, mechanical properties, Sustainability

Abstract

The environmental impact caused by solid waste has driven the development of sustainable materials. This study evaluates biocomposites made from polylactic acid (PLA) reinforced with fibers from the African palm rachis (Elaeis guineensis Jacq.), an underutilized agro-industrial byproduct. Short fibers and cellulose whiskers, thermally and chemically treated, were incorporated, achieving a cellulose purity of 48%. Thermal, structural, and mechanical properties were analyzed using FTIR, TGA, DSC, and SEM. The addition of fibers improved the elastic modulus of PLA by up to 10%; however, at a 30% concentration, tensile strength decreased due to poor interfacial compatibility. Thermal analysis revealed good stability and fusion behavior influenced by the reinforcement content. The results confirm the technical feasibility of using African palm fibers as reinforcement in biodegradable matrices, promoting the valorization of agricultural waste and the development of environmentally friendly polymeric materials.

Author Biographies

Emilio Pérez Pacheco, Universidad Modelo

Universidad Modelo, Centro de Investigaciones Silvio Zavala, 97305, Mérida Yucatán, México, emilioperez@modelo.edu.mx, https://orcid.org/0000-0003-2242-1183

Carlos Rolando Ríos Soberanis , Centro de Investigación Científica de Yucatán

Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo; CP 97205, Mérida, Yucatán, México. rolando@cicy.mx, https://orcid.org/0000-0003-3915-7331

Olivia Guadalupe Ortiz Cel, Tecnológico Nacional de México

Tecnológico Nacional de México/ITS de Calkiní. C.A. Bioprocesos, Av. Ah-Canul, Calkiní, Campeche, C.P. 24900, México. ogortiz@itescam.edu.mx, https://orcid.org/0000-0003-3159-457X

References

Ahmad, E., & Luyt, A. (2012). Morphology, thermal, and dynamic mechanical properties of poly (lactic acid)/sisal whisker nanocomposites. Polymer Composites, 33(6), 1025-1032.

Ajayi, S. M., Olusanya, S. O., Didunyemi, A. E., Abimbade, S. F., Olumayede, E. G., & Akintayo, C. O. (2025). Physicochemical properties of oil palm biomass waste fibres and its cellulose for engineering applications: a review. Biomass Conversion and Biorefinery, 15(5), 6545-6555.

Babu, N. S. A. (2024). Investigation of chemicomechanical properties of polyamide 12 composite reinforced with fillers from agriculture biowaste as a potential dental post

Bharat, N., Kumar, V., Veeman, D., & Vellaisamy, M. (2025). Enhancing mechanical properties of 3D-printed PLA/wood composites: a metaheuristic and statistical perspective. European Journal of Wood and Wood Products, 83(3), 1-22.

Bolio-López, G., Valadez-González, A., Veleva, L., & Andreeva, A. (2011). Whiskers de celulosa a partir de residuos agroindustriales de banano: Obtención y caracterización. Revista mexicana de ingeniería química, 10(2), 291-299.

Choksi, N., & Desai, H. (2017). Synthesis of biodegradable polylactic acid polymer by using lactic acid monomer. Int. J. Appl. Chem, 13(2), 377-384.

Dhakal, H. N., Khan, S. H., Alnaser, I. A., Karim, M. R., Saifullah, A., & Zhang, Z. (2024). Potential of date palm fibers (DPFs) as a sustainable reinforcement for bio‐composites and its property enhancement for key applications: a review. Macromolecular Materials and Engineering, 309(10), 2400081.

González-Navarro, M. F., Giraldo, L., & Moreno-Piraján, J. C. (2014). Preparation and characterization of activated carbon for hydrogen storage from waste African oil-palm by microwave-induced LiOH basic activation. Journal of Analytical and Applied Pyrolysis, 107, 82-86.

Graupner, N., & Müssig, J. (2017). Cellulose Fiber-Reinforced PLA versus PP. International Journal of Polymer Science, 2017(1), 6059183. https://doi.org/https://doi.org/10.1155/2017/6059183

Gupta, M. K., & Srivastava, R. K. (2016). Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polymer-Plastics Technology and Engineering, 55(6), 626-642. https://doi.org/10.1080/03602559.2015.1098694

Jayanthi, B., Vinoth, S., Hariharan, M., Raja, R. K., Kamaraj, C., & Narayanan, M. (2024). Valorization of agro-industry wastes for nanocellulose fabrication and its multifunctional applications. Biocatalysis and Agricultural Biotechnology, 57, 103124.

Leite-Barbosa, O., Pinto, C. C. d. O., Leite-da-Silva, J. M., De Aguiar, E. M. M. M., & Veiga-Junior, V. F. (2024). Polymer Composites Reinforced with Residues from Amazonian Agro-Extractivism and Timber Industries: A Sustainable Approach to Enhancing Material Properties and Promoting Bioeconomy. Polymers, 16(23), 3282.

Lv, R., He, Y., Wang, J., Wang, J., Hu, J., Zhang, J., & Hu, W. (2019). Flash DSC study on the annealing behaviors of poly (l-lactide acid) crystallized in the low temperature region. Polymer, 174, 123-129.

Mofokeng, J. P., Luyt, A., Tábi, T., & Kovács, J. (2012). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948.

Mokhena, T. C., Sefadi, J. S., Sadiku, E. R., John, M. J., Mochane, M. J., & Mtibe, A. (2018). Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers, 10(12), 1363. https://www.mdpi.com/2073-4360/10/12/1363

Nghiem, P. A. P., Alesini, D., Aschikhin, A., Assmann, R., Audet, T., Beck, A.,…Cianchi, A. (2019). Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality. Journal of Physics: Conference Series.

Piekarska, K., Sowinski, P., Piorkowska, E., Haque, M. M. U., & Pracella, M. (2016). Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Composites Part A: Applied Science and Manufacturing, 82, 34-41. https://doi.org/https://doi.org/10.1016/j.compositesa.2015.11.019

Shi, Q., Mou, H., Gao, L., Yang, J., & Guo, W. (2010). Double-melting behavior of bamboo fiber/talc/poly (lactic acid) composites. Journal of Polymers and the Environment, 18, 567-575.

Spiridon, I., Darie, R. N., & Kangas, H. (2016). Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Composites Part B: Engineering, 92, 19-27. https://doi.org/https://doi.org/10.1016/j.compositesb.2016.02.032

TG, Y. G., Ballupete Nagaraju, S., Puttegowda, M., Verma, A., Rangappa, S. M., & Siengchin, S. (2023). Biopolymer-based composites: an eco-friendly alternative from agricultural waste biomass. Journal of Composites Science, 7(6), 242.

Tingaut, P., Zimmermann, T., & Lopez-Suevos, F. (2010). Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid) and Acetylated Microfibrillated Cellulose. Biomacromolecules, 11(2), 454-464. https://doi.org/10.1021/bm901186u

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.

Yeo, J. C. C., Muiruri, J. K., Lee, P. S. K., Vijayakumar, R., Lin, T. T., Zhang, X.,…Li, Z. (2024). Sustainable poly (lactic acid) transformation: Leveraging agri-food waste—compatibilization strategies nexus for enhanced properties. Advanced Composites and Hybrid Materials, 7(6), 190.

Published

2025-11-09

How to Cite

Pérez Pacheco, E., Ríos Soberanis , C. R., & Ortiz Cel, O. G. (2025). Optimization and characterization of PLA biocomposites with fibers of Elaeis guineensis. Multidisciplinas De La Ingeniería, 13(22), 13–23. https://doi.org/10.29105/mdi.v13i22.334