Optimization of mechanical properties of a synthetic agglomerate by response surface methodology

Authors

  • Rogelio Antonio Canul Piste Tecnológico Nacional de México image/svg+xml
  • Emilio Pérez Pacheco Tecnológico Nacional de México image/svg+xml
  • Carlos Rolando Ríos Soberanis Centro de Investigación Científica de Yucatán
  • Mario Adrián de Atocha Dzul Cervantes Tecnológico Nacional de México image/svg+xml
  • Alejandro Ortiz Fernández Tecnológico Nacional de México image/svg+xml

DOI:

https://doi.org/10.29105/mdi.v12i20.324

Keywords:

binders, binder, reinforcement, mechanical properties, flexural modulus

Abstract

Optimization of mechanical properties of synthetic agglomerates using Response Surface Methodology (RSM) is an effective approach to optimize formulations and processes. Therefore, the objective of this work was to implement a Central Composite Design (CCD) in conjunction with an RSM for the prediction of the flexural mechanical properties of a synthetic agglomerate based on reinforced poly(lactic acid) (PLA) with natural fibers obtained from the coconut palm (Cocus nucifera L). To do this, the following independent variables were taken into account: A: fiber length (mm), B: binder concentration (%), C: thermoforming temperature (°C) and D: thermoforming pressure (kPa). The static bending elastic modulus (R1) was proposed as the response variable. Design-Expert 7.0.0 software was used to process the data. The combination of the coded levels for the independent factors, which maximizes the response variable R1 (theoretical module) is obtained when A= -2, B= -1.88, C= -2 and D= 0.21, resulting in a module elastic at bending of 474 MPa. This result was validated through a confirmatory experiment (n=5), obtaining an elastic flexural modulus of 453 MPa, very close to that obtained in the theoretical value

Author Biographies

Rogelio Antonio Canul Piste , Tecnológico Nacional de México

Alumno de Maestría. Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní (ITESCAM). 8564@itescam.edu.mx  https://orcid.org/0009-0003-9505-9979

Emilio Pérez Pacheco , Tecnológico Nacional de México

Profesor-Investigador. Jefatura de Ingeniería en Materiales. Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní (ITESCAM). Cuerpo Académico Bioprocesos. eperez@itescam.edu.mx  https://orcid.org/0000-0003-2242-1183

Carlos Rolando Ríos Soberanis , Centro de Investigación Científica de Yucatán

Profesor-Investigador. Departamento de Materiales. Centro de Investigación Científica de Yucatán. rolando@cicy.mx  https://orcid.org/0000-0003-3915-7331

Mario Adrián de Atocha Dzul Cervantes , Tecnológico Nacional de México

Profesor-Investigador. Jefatura de Ingeniería en Materiales. Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní (ITESCAM). Cuerpo Académico Bioprocesos. maadzul@itescam.edu.mx  https://orcid.org/0000-0002-9095-7281

Alejandro Ortiz Fernández, Tecnológico Nacional de México

Profesor-Investigador. Jefatura de Ingeniería en Materiales. Tecnológico Nacional de México. Campus Instituto Tecnológico Superior de Calkiní (ITESCAM). Cuerpo Académico Bioprocesos. Autor para correspondencia: aeortiz@itescam.edu.mx  https://orcid.org/0000-0002-9689-2124

References

Lemus, J.E.G., Propiedades Físico Mecánicas de la madera plástica elaborada con polímeros reciclados como aglutinantes. Revista Canalización del Conocimiento Científico, 2022. 1.

Luna, P. and J.M. Lizarazo-Marriaga, Fibras naturales como refuerzo en materiales compuestos de matriz polimérica. Momento, 2022(65): p. 65-79. DOI: https://doi.org/10.15446/mo.n65.103151

Gumus, N., E. Doganci, and A. Aytac, Evaluations of the effects of different flame retardants combinations on particleboards produced using urea–formaldehyde resin. European Journal of Wood and Wood Products, 2024. 82(3): p. 747-759. DOI: https://doi.org/10.1007/s00107-024-02054-6

Thakur, H.K. and G. Prasad, Mode 1, Mode II, and Mixed Mode I/II Fracture Behavior of Laminated Structures, in Fracture Behavior of Nanocomposites and Reinforced Laminate Structures. 2024, Springer. p. 123-155. DOI: https://doi.org/10.1007/978-3-031-68694-8_6

Prvanov, S., The refurbishment of M/V Anna Maru four samples of using durable wood products in passenger ship interior and exterior design. Journal of Wood Science, 2017. 5.

Ramezani Dana, H. and F. Ebrahimi, Synthesis, properties, and applications of polylactic acid‐based polymers. Polymer Engineering & Science, 2023. 63(1): p. 22-43. DOI: https://doi.org/10.1002/pen.26193

Ajaj, Y., et al., Effect and investigating of graphene nanoparticles on mechanical, physical properties of polylactic acid polymer. Case Studies in Chemical and Environmental Engineering, 2024. 9: p. 100612. DOI: https://doi.org/10.1016/j.cscee.2024.100612

Batista-Menezes, D., et al., Nanocelulosas a partir de biomasas con amplio potencial industrial en Costa Rica. NANOCELIA: p. 111.

Satyanarayana, K., J. Guimarães, and F. Wypych, Studies on lignocellulosic fibers of Brazil. Part I: Source, production, morphology, properties and applications. Composites Part A: Applied Science and Manufacturing, 2007. 38(7): p. 1694-1709. DOI: https://doi.org/10.1016/j.compositesa.2007.02.006

Inegbedion, F., F. Inegbedion, and I.E. Osasona, Coconut Fibre (Coir) Composites: A Review. Journal of Materials Engineering, Structures and Computation, 2024. 3(2).

Rencoret, J., et al., Structural characterization of lignin isolated from coconut (Cocos nucifera) coir fibers. Journal of agricultural and food chemistry, 2013. 61(10): p. 2434-2445. DOI: https://doi.org/10.1021/jf304686x

Boublia, A., et al., State-of-the-art review on recent advances in polymer engineering: modeling and optimization through response surface methodology approach. Polymer Bulletin, 2023. 80(6): p. 5999-6031. DOI: https://doi.org/10.1007/s00289-022-04398-6

Published

2024-11-01

How to Cite

Canul Piste , R. A., Pérez Pacheco , E., Ríos Soberanis , C. R., Dzul Cervantes , M. A. de A., & Ortiz Fernández, A. (2024). Optimization of mechanical properties of a synthetic agglomerate by response surface methodology. Multidisciplinas De La Ingeniería, 12(20), 123–132. https://doi.org/10.29105/mdi.v12i20.324