Operation of an artificial neuronal network with the backpropagation method
DOI:
https://doi.org/10.29105/mdi.v9i14.282Keywords:
Artificial neural networks, Artificial intelligence, BackPropagationAbstract
The objective of this research is to present the process in which an Artificial Neural Network can be programmed, through the BackPropagation method, in order to the processes from the installation of the program to be used are applied and shown, as well as the visualization methodology to determine what the Neural Network is working, in the same way to show in a theoretical way that the application of Artificial Neural Networks help in daily life.
References
(SF). ¿Qué es una red neuronal? Recuperado 25 de mayo de 2020, de https://la.mathworks.com/discovery/neural-network.html
Aldabas-Rubira, E. (2002). Introducción al reconocimiento de patrones mediante redes neuronales. IX Jornades de Conferències d'Enginyeria Electrònica del Campus de Terrassa, Terrassa, España, del 9 al 16 de diciembre del 2002.
Huerta, H. V., Vásquez, A. C., Dueñas, A. M. H., Loayza, L. A., & Naupari, P. J. R. (2009). Reconocimiento de patrones mediante redes neuronales artificiales. Revista de investigación de Sistemas e Informática, 6(2), 17-26.
Matich, D. J. (2001). Redes Neuronales: Conceptos básicos y aplicaciones. Universidad Tecnológica Nacional, México.
Moreno Rodríguez, A. (2009). Desarrollo de una interfaz gráfica de redes neuronales usando Matlab (Master's thesis).
Plata Cheje, R. W. (2008). Mat Lab & Redes Neuronales. Revista de Información, Tecnología y Sociedad, 96.
Zapata, E. L. (2020). Entrenamiento de una Red Neuronal Hardware desde Mat Lab (Hardware in the Loop). Universidad Politécnica de Madrid, 45-59.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.