Compensación del error de impedancia en el relevador de distancia ante la modernización del sistema eléctrico de potencia
DOI:
https://doi.org/10.29105/mdi.v3i03.89Palabras clave:
Filtros digitales, relevadores de distancia, Mínimos Cuadrados, Prony, impedancia aparenteResumen
En este trabajo se caracteriza el error provocado por las componentes frecuenciales no síncronas (Generadas por la modernización del sistema eléctrico de potencia) en los filtros digitales convencionales de relevadores de distancia utilizando señales simuladas y eventos de falla reales. Se propone una nueva familia de filtros digitales utilizando el método de Mínimos Cuadrados y Prony para la compensación del error en el estimado de la impedancia aparente en relevadores de distancia ante dispositivos de nueva generación en el sistema de potencia. La compensación de las fuentes de error en el relevador de distancia permite incrementar la confiabilidad y selectividad del sistema de protección.
Citas
Sigfried Heier, Grid integration of wind energy conversion systems, Wiley, 2006.
A.K. Pradhan, Joós, ‘‘Adaptive distance relay setting for lines connecting wind farms’’, IEEE Transactions on Energy Conversion, Vol. 22, No.1, March 2007, Pages: 206-213. DOI: https://doi.org/10.1109/TEC.2006.889621
A. Perdana, O. Carlson, “Dynamic response of grid- connected wind turbine with doubly fed induction generator during disturbances”, Nordic workshop on power and industrial electronics, TRONDHEIM-2004, Pages: 1-7.
Nattapong Chayawatto, Egon Ortojohann, “Dynamic behavior of a doubly fed induction machine with generator side converter under abnormal condition”, National Science and Technology Development Agency (NSTDA), Thailand.
Alireza, Saeed, Transient response of doubly fed induction generator under voltage sag using an accurate model, University of Tehran, Iran.
Richard Gagnon, Gilbert Sybille, “Modelling and real-time simulation of a DFIG driven by a wind turbine”, IPST 2005, IPST05-162.
Joris Soens, Karel de Brabandere, “Doubly Fed induction machine: operating regions and dynamic simulation”, EPE 2003-Toulouse, Page: 1-10.
B. Chitti, K.B. Mohanty, “Wind turbine driven DFIG with grid disconnection”, Department of Electrical Engineering, National Institute of Technology Rourkela (India).
L. A. Trujillo G, "Compensación del error de impedancia aparente en un relevador de distancia por la presencia de dispositivos FACTS", Tesis de Maestría, Programa Doctoral en Ingeniería Eléctrica, FIME, UANL, 2008.
Florin Iov, Anca Daniela Hansen, Poul Sorensen, Nicolas Antonio C. "Mapping of grid faults and grid codes", Riso National Laboratory, Technical University of Denmark, Roskilde Denmark, July 2007.
.B. Roberts, A. Guzman, E.O. Schweitzer, III, ‘‘Z=V/I does not make a distance relay’’, SIPSEP-93-17, Nov 1993 Page(s): 158-164.
A. R. Van C. Warrington, Protective Relays their theory and practice, volume two, Chapman and Hall London, England
V Cook, Analysis of Distance Protection, RSP Wales, England.
Proakis, John G. & Manolakis, D.G. Tratamiento digital de señales. Madrid. Prentice hall. 1998.
E.O. Schweitzer, III Schweitzer Eng. Lab., Inc., Pullman, WA, USA, D. Hou,”Filtering for protective relays” WESCANEX 93. 'Communications, Computers and Power in the Modern Environment.' Conference Proceedings, IEEE, Pages: 15 – 23, May
Héctor J. Altuve F, Ismael Díaz, Ernesto Vázquez, ‘‘Evaluación del filtros digitales fourier, seno y coseno para protección de distancia’’, Tópicos Selectos de Protección Digital de Sistemas Eléctricos de Potencia, Universidad Autónoma de Nuevo León,
México.
Thomas Ackerman, Wind Power in Power Systems, Wiley, 2005. DOI: https://doi.org/10.1002/0470012684
Lennart Ljung, Modeling of dynamic systems, Prentice Hall, 1994.
Slavomir Seman, Jouko Niiranen, ‘‘Ride through analysis of doubly fed induction wind power generator under unsymmetrical network disturbances’’, IEEE Transactions on Power Systems, Vol. 21, No.4, November 2006, Pages: 1782-1789. DOI: https://doi.org/10.1109/TPWRS.2006.882471
E. Muljadi, S. Pasupulati, A. Ellis, D. Kosterev, “Method of Equivalencing for a Large Wind Power Plant with Multiple Turbine Representation”, presented at the IEEE Power Engineering Society, General Meeting, Pittsburgh, PA, July 20-24, 2008. DOI: https://doi.org/10.2172/1218414
E. Muljadi, C. P. Butterfield, A. Ellis, J. Mechenbier, J. Hochheimer, R. Young, N. Miller, R. Delmerico, R. Zavadil, and J. C. Smith, “Equivalencing the collector system of a large wind power plant,” in Proc. 2006 IEEE Power Engineering Society General Meeting. DOI: https://doi.org/10.1109/PES.2006.1708945
Ruben Tapia Olvera, “Un criterio óptimo para coordinar estabilizadores enfocado mediante una técnica global heurística”, Tesis de Maestría en Ciencias, CINVESTAV Unidad Guadalajara, Agosto 2002.
B. Chitti, K.B. Mohanty, “Wind turbine driven DFIG with grid disconnection”, Department of Electrical Engineering, National Institute of Technology Rourkela (India).
Abraham Valenzuela Valenzuela, “Análisis de estado estacionario y dinámico en SEP al incluir un dispositivo UPFC”, Tesis de Maestría en Ciencias, CINVESTAV Unidad Guadalajara, Noviembre 2000.
Madzarevic, V, Tseng, F.K, Woo, D.H, Niebuhr, W.D, Rocamora, R.G, “Overvoltages on EHV transmission lines due to faults and subsequent bypassing of series capacitors”, IEEE Transactions on Power Apparatus and Systems, Vol. 96, No. 6, November 1977, Pages: 1847-1855. DOI: https://doi.org/10.1109/T-PAS.1977.32518
Héctor J. Altuve, Joseph B. Mooney George E. Alexander, ‘‘Advances in SeriesCompensated Line Protection’’, Technical Report SEL, 2008, Pages: 1-13.
Bogdan Kasztenny, “Distance protection of series compensated lines problems and solutions”, GE Power Management, Markham, Ontario, Canada L6E 1B3, Spokane, October 2001.
Testa, A, “Interharmonics: Theory and modeling”, IEEE Transactions on Power Delivery, Vol. 22, No.4, October 2007, Pages: 2335-2348. DOI: https://doi.org/10.1109/TPWRD.2007.905505
Arun G. Phadke, Computer Relaying for Power Systems, Research Studies Press LTD, 1988.
Héctor J. Altuve F, Daniel Posada S, Ismael Díaz, Ernesto Vázquez, Oscar L. Chacón, ‘‘Evaluación del filtro digital de mínimos cuadrados para su aplicación en protección de distancia’’, Tópicos Selectos de Protección Digital de Sistemas Eléctricos de Potencia, Universidad Autónoma de Nuevo León, México.
J. F. Hauer, C.J. Demeure, L.L. Scharf, ‘‘Initial results in prony analysis of power system response signals’’, IEEE Transactions on Power Systems, Vol. 5, No.1, February 1990, Pages: 80-89. DOI: https://doi.org/10.1109/59.49090
Li Qi, Lewei Qian, Stephen Woodruff, David Cartes, ‘‘Prony Analysis for Power System Transients’’, EURASIP Journal on Advances in Signal Processing, Vol. 2007, No.1, 2007, Pages: 1-12. DOI: https://doi.org/10.1155/2007/48406
T. Lobos, J. Rezmer, P. Schegner, ‘‘Parameter Estimation of Distorted Signals’’, IEEE Bologna, Power Tech Conference Proceedings, Vol. 4, No.1, June 2004, Pages: 1-5.
Zbigniew Leonowicz, "Parametric methods for time–frequency analysis of electric signals", Politechnika Wrocławska, Wroclaw University of Technology, Poland, 2006.
Michel Meunier, Francoise Brouaye, ‘‘Fourier transform, Wavelets, Prony Analysis: Tools for Harmonics and Quality of Power’’, 8th International Conference on Harmonics and Quality of Power ICHQP '98, Vol. 1, No.1, Pages: 71-76, October 1998.
N. G. Hingorani, L. Gyugyi, Understanding FACTS Concepts and Technology of Flexible AC Transmission Systems, IEEE Press.
R.V. Jackson, G.W. Swift, “An Efficient Zero-Loss Technique for Data Compression of Long Fault Records”, Fault and disturbance analysis conference 96’, Pages:1-7, November 1996.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.