Optimización y caracterización de biocompuestos de PLA con fibras de Elaeis guineensis

Autores/as

  • Emilio Pérez Pacheco Universidad Modelo image/svg+xml
  • Carlos Rolando Ríos Soberanis Centro de Investigación Científica de Yucatán
  • Olivia Guadalupe Ortiz Cel Tecnológico Nacional de México image/svg+xml

DOI:

https://doi.org/10.29105/mdi.v13i22.334

Palabras clave:

Biocompuestos, Ácido poliláctico, Fibra de raquis de palma africana, propiedades mecánicas, Sostenibilidad

Resumen

El impacto ambiental generado por residuos sólidos ha impulsado el desarrollo de materiales sostenibles. Este estudio evalúa biocompuestos elaborados con ácido poliláctico (PLA) reforzado con fibras del raquis de palma africana (Elaeis guineensis Jacq.), un residuo agroindustrial subutilizado. Se incorporaron fibras cortas y whiskers de celulosa, tratadas térmica y químicamente, alcanzando una pureza celulósica del 48%. Las propiedades térmicas, estructurales y mecánicas se analizaron mediante FTIR, TGA, DSC y SEM. La adición de fibras mejoró el módulo de elasticidad del PLA hasta en un 10%; sin embargo, a una concentración del 30%, la resistencia a la tracción disminuyó por baja compatibilidad interfacial. Los análisis térmicos evidenciaron buena estabilidad y comportamiento de fusión influenciado por el contenido de refuerzo. Los resultados confirman la viabilidad técnica de emplear fibras de palma africana como refuerzo en matrices biodegradables, promoviendo la valorización de residuos agrícolas y el diseño de materiales poliméricos ecológicos.

Biografía del autor/a

Emilio Pérez Pacheco, Universidad Modelo

Universidad Modelo, Centro de Investigaciones Silvio Zavala, 97305, Mérida Yucatán, México, emilioperez@modelo.edu.mx, https://orcid.org/0000-0003-2242-1183

Carlos Rolando Ríos Soberanis , Centro de Investigación Científica de Yucatán

Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo; CP 97205, Mérida, Yucatán, México. rolando@cicy.mx, https://orcid.org/0000-0003-3915-7331

Olivia Guadalupe Ortiz Cel, Tecnológico Nacional de México

Tecnológico Nacional de México/ITS de Calkiní. C.A. Bioprocesos, Av. Ah-Canul, Calkiní, Campeche, C.P. 24900, México. ogortiz@itescam.edu.mx, https://orcid.org/0000-0003-3159-457X

Citas

Ahmad, E., & Luyt, A. (2012). Morphology, thermal, and dynamic mechanical properties of poly (lactic acid)/sisal whisker nanocomposites. Polymer Composites, 33(6), 1025-1032.

Ajayi, S. M., Olusanya, S. O., Didunyemi, A. E., Abimbade, S. F., Olumayede, E. G., & Akintayo, C. O. (2025). Physicochemical properties of oil palm biomass waste fibres and its cellulose for engineering applications: a review. Biomass Conversion and Biorefinery, 15(5), 6545-6555.

Babu, N. S. A. (2024). Investigation of chemicomechanical properties of polyamide 12 composite reinforced with fillers from agriculture biowaste as a potential dental post

Bharat, N., Kumar, V., Veeman, D., & Vellaisamy, M. (2025). Enhancing mechanical properties of 3D-printed PLA/wood composites: a metaheuristic and statistical perspective. European Journal of Wood and Wood Products, 83(3), 1-22.

Bolio-López, G., Valadez-González, A., Veleva, L., & Andreeva, A. (2011). Whiskers de celulosa a partir de residuos agroindustriales de banano: Obtención y caracterización. Revista mexicana de ingeniería química, 10(2), 291-299.

Choksi, N., & Desai, H. (2017). Synthesis of biodegradable polylactic acid polymer by using lactic acid monomer. Int. J. Appl. Chem, 13(2), 377-384.

Dhakal, H. N., Khan, S. H., Alnaser, I. A., Karim, M. R., Saifullah, A., & Zhang, Z. (2024). Potential of date palm fibers (DPFs) as a sustainable reinforcement for bio‐composites and its property enhancement for key applications: a review. Macromolecular Materials and Engineering, 309(10), 2400081.

González-Navarro, M. F., Giraldo, L., & Moreno-Piraján, J. C. (2014). Preparation and characterization of activated carbon for hydrogen storage from waste African oil-palm by microwave-induced LiOH basic activation. Journal of Analytical and Applied Pyrolysis, 107, 82-86.

Graupner, N., & Müssig, J. (2017). Cellulose Fiber-Reinforced PLA versus PP. International Journal of Polymer Science, 2017(1), 6059183. https://doi.org/https://doi.org/10.1155/2017/6059183

Gupta, M. K., & Srivastava, R. K. (2016). Mechanical Properties of Hybrid Fibers-Reinforced Polymer Composite: A Review. Polymer-Plastics Technology and Engineering, 55(6), 626-642. https://doi.org/10.1080/03602559.2015.1098694

Jayanthi, B., Vinoth, S., Hariharan, M., Raja, R. K., Kamaraj, C., & Narayanan, M. (2024). Valorization of agro-industry wastes for nanocellulose fabrication and its multifunctional applications. Biocatalysis and Agricultural Biotechnology, 57, 103124.

Leite-Barbosa, O., Pinto, C. C. d. O., Leite-da-Silva, J. M., De Aguiar, E. M. M. M., & Veiga-Junior, V. F. (2024). Polymer Composites Reinforced with Residues from Amazonian Agro-Extractivism and Timber Industries: A Sustainable Approach to Enhancing Material Properties and Promoting Bioeconomy. Polymers, 16(23), 3282.

Lv, R., He, Y., Wang, J., Wang, J., Hu, J., Zhang, J., & Hu, W. (2019). Flash DSC study on the annealing behaviors of poly (l-lactide acid) crystallized in the low temperature region. Polymer, 174, 123-129.

Mofokeng, J. P., Luyt, A., Tábi, T., & Kovács, J. (2012). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948.

Mokhena, T. C., Sefadi, J. S., Sadiku, E. R., John, M. J., Mochane, M. J., & Mtibe, A. (2018). Thermoplastic Processing of PLA/Cellulose Nanomaterials Composites. Polymers, 10(12), 1363. https://www.mdpi.com/2073-4360/10/12/1363

Nghiem, P. A. P., Alesini, D., Aschikhin, A., Assmann, R., Audet, T., Beck, A.,…Cianchi, A. (2019). Eupraxia, a step toward a plasma-wakefield based accelerator with high beam quality. Journal of Physics: Conference Series.

Piekarska, K., Sowinski, P., Piorkowska, E., Haque, M. M. U., & Pracella, M. (2016). Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers. Composites Part A: Applied Science and Manufacturing, 82, 34-41. https://doi.org/https://doi.org/10.1016/j.compositesa.2015.11.019

Shi, Q., Mou, H., Gao, L., Yang, J., & Guo, W. (2010). Double-melting behavior of bamboo fiber/talc/poly (lactic acid) composites. Journal of Polymers and the Environment, 18, 567-575.

Spiridon, I., Darie, R. N., & Kangas, H. (2016). Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Composites Part B: Engineering, 92, 19-27. https://doi.org/https://doi.org/10.1016/j.compositesb.2016.02.032

TG, Y. G., Ballupete Nagaraju, S., Puttegowda, M., Verma, A., Rangappa, S. M., & Siengchin, S. (2023). Biopolymer-based composites: an eco-friendly alternative from agricultural waste biomass. Journal of Composites Science, 7(6), 242.

Tingaut, P., Zimmermann, T., & Lopez-Suevos, F. (2010). Synthesis and Characterization of Bionanocomposites with Tunable Properties from Poly(lactic acid) and Acetylated Microfibrillated Cellulose. Biomacromolecules, 11(2), 454-464. https://doi.org/10.1021/bm901186u

Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.

Yeo, J. C. C., Muiruri, J. K., Lee, P. S. K., Vijayakumar, R., Lin, T. T., Zhang, X.,…Li, Z. (2024). Sustainable poly (lactic acid) transformation: Leveraging agri-food waste—compatibilization strategies nexus for enhanced properties. Advanced Composites and Hybrid Materials, 7(6), 190.

Descargas

Publicado

2025-11-09

Cómo citar

Pérez Pacheco, E., Ríos Soberanis , C. R., & Ortiz Cel, O. G. (2025). Optimización y caracterización de biocompuestos de PLA con fibras de Elaeis guineensis. Multidisciplinas De La Ingeniería, 13(22), 13–23. https://doi.org/10.29105/mdi.v13i22.334