LA ENSEÑANZA DE LAS ECUACIONES DIFERENCIALES: DOS POSTURAS, UN OBJETIVO

Bertha Ivonne Sánchez Luján

Alberto Camacho Ríos

María Teresa Martínez Acosta

RESUMEN

de la Educación Superior Tecnológica en el Programa de Movilidad para el fortalecimiento de la función docente con el que se estudiaron las concepciones que poseen los estudiantes y profesores de nivel superior acerca de las Ecuaciones Diferenciales (ED), se aplicó una técnica de análisis argumentativo propia de la Teoría de las Representaciones Sociales.

Es de especial importancia la forma de conocer un contenido matemático (entendido como las concepciones —Representaciones Sociales- que los estudiantes tienen del mismo), ya que deriva en lo que se considera importante aprender, esto es, en las prácticas sociales en el aula.

Por otro lado, la importancia que dan los profesores a la solución de ED dentro de los temas del curso, los métodos más utilizados, así como conocer y comparar las interpretaciones que sobre el concepto utilizan en el aula y analizar la influencia de su propia formación profesional al momento de impartir la clase.

El presente reporte se refiere a una investigación realizada dentro del marco del Espacio Común

Palabras Clave: Ecuaciones diferenciales, representaciones sociales.

INTRODUCCIÓN

El concepto de representación social (RS) fue introducido por Moscovici en 1961, designa una forma de conocimiento específico, el saber del sentido común, cuyos contenidos manifiestan la operación de procesos de comunicación, comprensión y el dominio del entorno social, material e ideal, (Jodelet, 1986). La representación que elabora un grupo sobre lo que debe llevar a cabo, define objetivos y procedimientos específicos para sus miembros. Las RS son un reflejo interior de algo exterior (Moscovici y Hewstone, 1986), son parte del sentido común y al mismo tiempo lo forman y modifican a partir de la información del entorno.

Los significados, imágenes o concepciones forman parte del pensamiento del sentido común, el cual se desarrolla día con día en la relación con otras personas, es decir, no se construye de forma individual (Camacho y Sánchez, 2008).

El sentido común (epistemología popular) incluye las imágenes y los lazos mentales que son utilizados por todo el mundo cuando los individuos intentan resolver problemas familiares o resolver su desenlace. Es un cuerpo de conocimientos basado en tradiciones compartidas y enriquecido por miles de "observaciones", de "experiencias", sancionadas por la práctica. (Moscovici y Hewstone, 1986).

Las prácticas que diariamente se realizan en las aulas son actividades influenciadas ya sea interna o externamente, y que para diferentes épocas dieron avance a la ciencia en general y a las matemáticas en particular (Camacho, 2006).

De aquí se destacan tres actividades:

- a) La búsqueda de significados asociados cercanos a los conceptos de la matemática,
- b) La recuperación de las prácticas de referencia y prácticas sociales de uso en cuyas actividades estuvo inmerso el conocimiento en juego, y
- c) El diseño y recreación de prácticas de enseñanza que incorporen el propio concepto, los nuevos significados asociados y sus acciones procedimentales (Camacho y Sánchez, 2011).

El proyecto es realizado esencialmente a partir de un análisis cognitivo del concepto, en tanto, las nociones de representación, concepción y constructo han sido ampliamente estudiadas en matemática educativa (ME). Estas mismas fueron analizadas por De Vecchi principio, estos autores presentaron la noción de "concepción" como "un elemento motor que entra

& Giordan (1987). En

en el entendimiento de un conocimiento y permite al mismo tiempo hacer transformaciones del mismo". En diversas investigaciones de ME es sabido que los estudiantes "construyen" las concepciones, toda vez que se les relaciona a un saber.

Pocos estudios relacionan el saber con las concepciones de los profesores. En este sentido, se considera que los profesores desarrollan concepciones personales de frente al propio conocimiento.

Fortín (1992, c.p. Fil, Amade-Escot, Genet-Volet, s.f.) mostró a través de un estudio de casos, cómo las influencias de la experiencia y de los conocimientos adquiridos a lo largo de una carrera son determinantes en la elección de los contenidos a enseñar. Las representaciones de los profesores revelan procesos complejos que combinan conocimientos, creencias y experiencias que influyen sobre la manera en que son organizados y llevados a la práctica de la enseñanza (Mingüer, 2004).

A lo largo del reporte, se ha usado el término "representación" de manera análoga al de "concepción" a partir de la diversidad de estudios comparativos que al respecto se han realizado.

Astolfi (1997) fue de los primeros en tratar de integrar ambas nociones concibiendo la primera como "un modelo personal de organización de conocimientos", (citado en Dollo, 2003) en tanto la segunda es de carácter "científico". Ha sido Abric quien asume la noción de representación como un argumento teórico y alternativo al de concepción para el análisis cognitivo, disociándole de su carácter solamente social e ingenuo de "noción", "idea", "opinión", etc.

JUSTIFICACIÓN

Las asignaturas de Matemáticas en las carreras de ingeniería, son la base sobre las cuales se forman los conocimientos necesarios para los futuros ingenieros, por lo que es de suma importancia reconocer las prácticas que los profesores realizan en la clase, y como ello influye en el desarrollo de la misma, la Teoría de las Representaciones Sociales presenta un enfoque con el que es posible realizar el estudio y apoyar de esta forma con propuestas encaminadas a mejorar el aprovechamiento en estas materias.

Nos interesa, además, saber la importancia que dan los profesores a la solución de ED dentro de los temas del curso, los métodos más utilizados, así como conocer y comparar las interpretaciones que sobre el concepto utilizan en el aula y analizar la influencia de su propia formación profesional al momento de impartir la clase.

Por parte de los estudiantes: conocer las concepciones que poseen acerca de las ED con el fin de proponer estrategias de aprendizaje.

METODOLOGÍA

Las respuestas dadas por los profesores presentan descripciones y argumentos que determinan las RS en estudio. Grize (1993), menciona que no existe discurso en que la dimensión argumentativa no esté presente, y es ahí donde las RS se expresan más ampliamente. Para obtener un discurso argumentado, se redactaron preguntas en las que los profesores pudieran expresar lo que para ellos es la enseñanza de las ED en el nivel de ingeniería y las dificultades que enfrentan durante el proceso, tales como son los errores más comunes en los estudiantes y cual piensan que es la causa de esos errores.

La estrategia metodológica incluye: a) una dimensión práctica, ideológica y cultural, y b) una dimensión cognitiva. Abordadas en el espacio en que las propias RS se generan y sustentan, para lo cual se diseñó un cuestionario que se aplicó a nueve profesores de la institución, quienes han impartido la materia o utilizan los métodos de resolución de ecuaciones diferenciales en la impartición de sus clases.

Se diseñó y aplicó un cuestionario a estudiantes y un cuestionario para profesores, ambos incluyeron las etapas de:

- 1) recolección del contenido
- 2) búsqueda de contenido y regularidades
- 3) verificación del sistema de representación
- 4) identificación de lazos y evidencia de elementos comunes
- 5) verificación de la centralidad

El grupo de estudio

Formado por nueve profesores que han impartido la materia de ED o utilizan la solución de estas en sus clases.

Característica			Característica	
Antigüedad	0 a 5 años	2	Asignaturas de	Ninguna 3
como docente	6 a 10 años	2	Matemáticas que ha	Mate I, II, III, IV, V 3
en nivel	11 a 15 años	2	impartido	Cálculo Diferencial 2
superior	Más de 20 años	3		Álgebra Lineal 1
			Cursos en los que aplica	En la propia materia de
Grado	Ingeniería	8	ED para resolver problemas	ED.
máximo de	Maestría	1		En otras materias:
estudios				Sistemas de Control
				Electricidad y
				Magnetismo
				Análisis de vibraciones
				Mecánica de Materiales

Tabla 1. Características de los profesores

Carrera	Estudiantes que ya cursaron la materia
Ingeniería Industrial	28
Ingeniería Electromecánica	8
Ingeniería Mecatrónica	12
Ingeniería Sistemas	18
Computacionales	
Total	66

Tabla 2. Encuestas aplicadas a estudiantes por carrera

RESULTADOS

Se analizaron las repuestas para detectar las partes centrales del discurso, en la siguiente tabla mostramos el tema central, se citan algunos de los argumentos y una explicación de los mismos.

Argumentos presentados por los docentes

Tema o	Argumentos	Análisis
1 0		
Al leer o	• variables, la representación de algo físico	La mayoría de los
escuchar la	• "problemas, muy dificil. Enfrentar un problema de	
frase	aplicación de las matemáticas."	encuestados
Ecuaciones	derivadas, cosas difíciles y feas, integrales	relaciona las ED con
diferenciales		algo dificil y alto
	• en poder utilizarlas para un problema práctico, en	índice de
¿qué piensa?	modelos matemáticos	reprobación.
	• una derivada, pienso en una relación distancia tiempo o	1

	peso, masa	
	• Fuera de la realidad.	
	Algo que tenemos que ver pero no sé porque,	
	Actual me maravilla y pienso q es el camino para	
	resolver muchas cosas.	
	En las ecuaciones diferenciales como modelos	
	matemáticos de la realidad física.	
¿Cuáles son los		
requisitos	las matemáticas anteriores, en especial diferencial	
mínimos o	algebra, cálculo integral, cálculo diferencial	Coinciden en los
conocimientos	Para aplicarlas: transformadas de Laplace	requisitos para el
previos que	Conocimientos de la derivada, cálculo diferencial, los	estudio de las ED
deben poseer	métodos de integración, y un poco de modelación de la	son álgebra y
los estudiantes	realidad inmediata.	cálculo.
de ED?	cálculo diferencial e integral, álgebra.	
	• La interpretación (parque es meterio de enlicación)	
	La interpretación (porque es materia de apricación)	
	como no tienen los conocimientos previos es muy difícil	
¿Cuáles son los	que las resuelvan, de tipo algebraico.	
errores más	álgebra y no saben las identidades trigonométricas.	Estos errores son los
frecuentes que	No saben integrar, deficiencia en álgebra, ya que se	conocimientos
cometen los	saben el procedimiento para resolver las ED pero el	previos del
estudiantes en	álgebra no.	argumento anterior.
el curso de ED?	• principalmente no saben despejar y vienen pobres en	
	álgebra, mezclan variables con constantes.	
	La abstracción, cómo traducir el problema en la	
	ecuación	

	a la falta de problemas de ciencia aplicada	
	• "les falta ver más aplicaciones, no utilizan la lógica, no	
	saben interpretar las condiciones de las variables.	
	escaso dominio del álgebra."	
	(suspiro) a que no estudian lo suficiente, no traen	
	bases, le tienen mucho miedo a la mate, aunque no la	
	conozcan, vienen predispuestos.	
	el muchacho conforme va subiendo en su nivel escolar	En general se piensa
	no trae suficiente práctica en álgebra, cálculo para	que no poseen
¿Cuál es la	abordar exitosamente las ED.	hábitos de estudio,
causa de estos		interés y tienen
errores?		deficiencias por el
	deficiencias en álgebra creo q cuando toman esta	propio sistema de
	materia no le dan la importancia adecuada.	enseñanza.
	Los modelo educativos se centran en los métodos o	
	procedimientos y no dejan tiempo para ver otras cosas	
	A que en los cursos previos no se enseña a modelar o	
	simular problemas elementales.	
	a lo rápido y extenso de los temarios de álgebra. y	
	entonces no queda lo básico. las herramientas	
	necesarias para sobrellevar las materias.	
¿Cuál considera	-	Coinciden en la
que es la		importancia
importancia de	poder representar matemáticamente una situación real,	curricular es para
las Ecuaciones	y para el entendimiento de los libros de nivel	resolver problemas
Diferenciales	profesional."	de aplicación en
para el	es muy importante porque se puede aplicar para	otras asignaturas (en
desarrollo	resolver diferentes sistemas p.ej. un sistema hidráulico,	las carreras de Ing.
curricular de los	un sistema eléctrico, etc., y por medio de algún	Electromecánica,
estudiantes?	software diseñar.	Mecatrónica y

	•	para los electromecánicos lo utilizan mucho en ing. de	Sistemas
		control, no he trabajado con sistemas pero me imagino	Computacionales, no
		que si las aplican, se usan en robótica.	así para Ing.
	١٠	porque en cada especialidad sobre todo en	Industrial).
		electromecánica es importante para resolver problemas	
	•	para que tengan un conocimiento más claro de las	
		ecuaciones o de la deducción de las mismas para los	
		problemas de aplicación posteriores.	
	•	Se supone que son las herramientas para modelar y	
		diseñar, la realidad es que no.	
	•	Las ecuaciones diferenciales ordinarias son solamente	
		un escalón para mejor entender la realidad inmediata.	
		Sin ellas no se pudieran modelar problemas todavía	
		más complejos como aquellos de difusión de calor o	
		bien los de vibraciones. No obstante, el curriculum	
		escolar de las carreras de ingeniería es por demás	
		limitado en esta dirección, dado que no se llega a la	
		modelación de ese tipo de problemas.	
	•	si, para cualquier carrera, ya que aprenden a resolver	
		problemas y resolver retos., para agilizar procesos.	
	•	"depende donde se desarrolle como profesionista, si es	
		el campo de la investigación es indispensable saber	
		ED. En la mayoría de los trabajos no se aplica."	
	•	En el campo profesional las aplicaciones están	Coinciden en lo poco
En el campo		directas, ya están resueltas, no hay aplicación.	que impacta en el
profesional			campo profesional.
			- Campo protesionai.
	•	En la iniciativa privada muy poco, únicamente para	
		resolver problemas muy específicos.	
	•	El campo profesional se ve limitado por restringir el	

	servicio de la matemática, limitándola solamente a las	
	expectativas de las empresas, en las cuales esta última	
	se deja de lado por la incomprensión de su utilidad y	
	aplicación.	
	sólo para estar preparado para resolver problemas	
	cotidianos, no de ED. propiamente.	
	Ing. de control: lineales, transformada de Laplace.	
G (1)	electricidad y magnetismo: lineales, Bernoulli algunas	
¿Cuál es el	veces en mecánica de fluidos.	
método más	lineales son las más comunes en lo problemas de	En las materias de
utilizado por	aplicación.	aplicación de ED, el
usted en sus	Los métodos que más se aplican en los cursos de ED	más utilizado es el
grupos para	son aquellos más elementales como el de coeficientes	de transformada de
resolver ED?	indeterminados, sin embargo, la utilidad de la	Laplace.
	transformada de Laplace en problemas específicos es	
	todavía de más aplicación.	
	al inicio no utilizaba software ahora sí: mathlab	
	mayor seguridad al impartirla, mas confiada, ya	Se percibe que los
	conozco más libros para aplicaciones.	profesores no han
	• casi no ha cambiado	cambiado en mucho
Semejanzas/dife		su forma de impartir
rencias en la	"si ha cambiado: al principio aplicaba las fórmula	la clase de ED,
forma de impartir la clase con el paso de	directas, al tener índice de reprobación muy alto	algunos cambian con
	comencé paso por paso y vi que los muchachos	la experiencia propia
	comprendieron mejor los temas"	e integran en sus
los años.	Inicio: buscar una fuente de información del	clases un mayor
	procedimiento y analizar la problemática, hoy es al	número de
	contrario, primero el problema y luego ver q	problemas de
	herramienta se ajusta.	aplicación.
	потышения эе адизия.	

	La diferencia fundamental se centra en el	
	entendimiento, a lo largo de los años, del	
	reconocimiento de la utilidad de las ED como	
	fundamentales en la modelación de problemas de la	
	realidad inmediata. Sin embargo, estas últimas son	
	solamente el escalón que sirve para mediar en una	
	modelación que involucra más variables que llevan a la	
	incorporación de una matemática más especializada	
	que tiene en su seno otro tipo de argumentaciones	
	como los sistemas ortogonales: series de Fourier y de	
	Bessel, etc., que dimensionan de mejor forma la	
	enseñanza de las propias ecuaciones diferenciales.	
	• si ha cambiado y sobre todo en la forma de ajustar el	
	tiempo en base a la experiencia. En cuanto a los	
	medios didácticos también porque ahora incluyo	
	prácticas.	
	para la materia de Control: Ing. de control moderna de	
	OGATA y Benjamín Kuo (sistemas dinámicas)	
	Ecuaciones diferenciales de Zill, el de Isabel Carmona	Cada profesor utiliza
	"Shaum, Isabel Carmona para ecuaciones	diferentes libros de
	diferenciales"	acuerdo a la
Bibliografía	"física y electricidad y magnetismo: Beer & Jhonston.	disponibilidad de
recomendada	Fitzgerald Mecánica de materiales y el de Beer."	estos en la biblioteca
	• Quizá el libro de Zill, versión 2008, volumen 1, sobre	escolar, sus
	ecuaciones diferenciales.	preferencias y la
		materia a impartir.
	Ecuaciones diferenciales de Shawm	
Forma de	• con examen y ejercicios de tarea a mano y/o con	La forma de evaluar
evaluar	mathlab	en la mayoría de los
Cvarual	шаша0	casos es con el

	•	examen, tareas extraclase.	examen y ejercicios.
	١٠	"como es difícil que aprueben en un sólo examen, en	Algunos de ellos
		ED les dejo problemas diferentes a cada alumno y	están utilizando
		sorteo quien pasa a exponer en el pizarrón, además del	resolución de
		examen.	problemas con
	•	En análisis de vibraciones con ejercicios."	software.
	•	asistencia, tareas, trabajos, examen escrito.	
	•	Enseño, primero, conceptos, enseguida involucro la	
		resolución de problemas, sobre todo los que aparecen	
		en los textos, para, luego, proponer la resolución de	
		problemas proyectos más especializados en los que	
		incorporo tanto conocimientos como la utilidad de	
		software educativo como el Mathematica. Ello me	
		permite rebasar el solo entendimiento de los	
		conceptos.	
	•	la tecnología facilita lograr objetivos, pero limita en el	Se están aplicando
		desarrollo de la solución.	paquetes
	•	es importante porque el software nos ayuda a entender	computacionales
		el comportamiento de los sistemas: un circuito	principalmente en las
¿Qué piensa		eléctrico, uno mecánico, amperímetros, innovar.	materias de
acerca de la	•	yo lo veo igual, pero si me gusta que utilicen los	aplicación como
innovación en la		paquetes o las calculadoras programables, porque se	Ingeniería de
enseñanza de		ahorra mucho tiempo pero me gusta que lo hagan de	Control, e inclusive
las Ecuaciones		las dos maneras.	se les piden
Diferenciales?	•	"no está de acuerdo con el sistema de competencias,	proyectos.
		no lo considero adecuado porque el alumno saldría	Un 33% de los
		menos preparado, pues hay que trabajar en equipos y	profesores
		hay quienes no trabajan. No hay mejora en el sistema	encuestados no está
		por competencias, no mejora el aprendizaje del	de acuerdo en
		alumno.	utilizar software pues

		consideran que no
	No me gusta utilizar software pues con una sola tecla	se aprende igual
	da el resultado, no deja ejercitar el cerebro, pero si	pues obtenemos los
	utiliza la calculadora.	resultados en forma
	Los caminos inductivos dan más seguridad pero llevan	directa.
	más tiempo, acumulamos gran número de técnicas y	
	procedimientos, y luego viene la transversalidad.	
	Creo que el eje central de la enseñanza de la ED debe	
	tener una herramienta computacional de esa	
	naturaleza: Sin ello, la enseñanza de esta disciplina	
	resulta por demás monótona y los conocimientos	
	pierden su objetivo final, cuál es su utilidad.	
¿Cuál libro o		
libros utiliza		Utilizan el mismo
para impartir la	 Los de la bibliografía citada. 	libro de referencia
clase?		para sus estudiantes.

Tabla 3. Análisis de los argumentos

El análisis de los argumentos nos proporcionan las RS que los estudiantes poseen acerca de las ED. Sus representaciones sociales están fuertemente influenciadas por su propio proceso de aprendizaje, y por sus profesores.

Argumentos de los estudiantes y su análisis

	Argumentos	
Tema o pregunta	Se conserva la redacción original de los estudiantes	Análisis
	(ortografía)	

	una materia muy compleja y dificil, reprobar	
	• en que esta difícil y en estrés	
	• matemáticas muy complicadas de echo fue una de las	La mayoría de
Al leer o escuchar	materias más difíciles del semestre	los encuestados
la frase	• pienso que son puros símbolos y números	relaciona las ED
Ecuaciones	combinados, que son ecuaciones difíciles de resolver	con algo dificil y
diferenciales ¿qué		alto índice de
piensa?	• En problemas que hay que resolver	reprobación.
	• en aspirinas para el dolor de cabeza	
	• me da miedo, que es de mucho razonamiento	
¿Cuáles son los		
requisitos mínimos	algebra y calculo diferencial	
o conocimientos	• integrales, derivadas, algebra	
previos que	• sumar, restar, sustituir, y despejar	Coinciden en la necesidad del
consideras se	• un amplio conocimiento de derivadas en general,	álgebra y cálculo.
deben tener para	amplio conocimiento de integrales y de métodos de	aigeora y carcuio.
cursar la materia	solución de sistemas de ecuaciones lineales	
de ED?		
	Pues al elaborar la ecuación se me hacía difícil realizar	Inherentes al
	la comprobación.	estudiante: bases
¿Qué tipo de	el profesor no explicaba claramente dejaba muchas	deficientes de
errores surgieron	dudas y explicaba muy confuso y a la hora del examen	álgebra.
durante tu curso	pues esas dudas saltaban y por lo cual no lo aprobaba.	
de ecuaciones	error en las sumas, que los conocimientos básicos para	Del lado del
diferenciales?	resolver ecuaciones diferenciales no son los suficientes	profesor: falta de
	• los despejes y que no teníamos las bases suficientes	claridad en las
	para poderla llevar	explicaciones.
¿A qué crees que	Yo creo que a falta de práctica.	Loa principales
se deben estos	1	1

errores?	profesor no hacía que yo me interesara en la materia	muestran la falta de
	• no momen otomojóm om ologo	
	no poner atención en clase	interés de los
1	• no traer buenas bases de las materias pasadas	propios
	• a que no analizamos lo que se nos piden	estudiantes, los
	a la falta de atención y estudio de las matemáticas	conocimientos
	• que no se daba a explicar de una forma más simple y	previos, seguidos
	con más ejemplos	de la manera de
	a que los problemas se quieren resolver rápidamente y	explicar del
	la presión ejercida por los maestros	profesor.
	•	
	•	
	pues muchas veces son porque no nos interesa la	
	materia o el profe que la está impartiendo, pues que los	
	maestros tienen diferente metodología	
	• física, logística, investigación de operaciones	
	• mecánica de fluidos, simulación	
Menciona en cuáles	• estadística 2, ingeniería de los materiales,	
materias has	investigación de operaciones	Los estudiantes
aplicado los métodos	• en ninguna	de ISC e IEM son
aprendidos en	Dinámica de sistemas , vibraciones, control,	los que más aplican
Ecuaciones	dinámica	las ED en materias
Diferenciales	• mecánica de fluidos, termodinámica, maquinas	posteriores.
	hidráulicas y ventiladores	
	• lo utilice con la materia de matemáticas discretas	
¿Cuál es el	Laplace, Fourier, ecuación de Bernoulli, variación	Los métodos
método que más	de parámetro	más utilizados son
utilizas para	• transformadas de la place, bernoulli	los de transformada

resolver	Laplace, variación de parámetros, bernoulli, etc.	de Laplace
Ecuaciones	 sustitución análisis de vibración 	
Diferenciales?	• factor integrante	
	mathematica	
	maticinatica	
¿Utilizas algún software en la solución de ED?	 mathematica 7 Wolfram Mathematica Derive 	El más utilizado es el Mathematica
	• "un poco por la manera de dar solución a diferentes	
	ecuaciones"	
	• si, en el sentido de que me dieron más conocimiento	
G 1://	sobre las matemáticas	Las opiniones
¿Cambió tu	• pues la verdad si porque cuando las escucha uno	están divididas casi
manera de pensar	piensa en que son muy difíciles de resolver pero	por la mitad, hay
acerca de las	después de llevarlas pues no tanto	quienes siguen
Ecuaciones	no cambio porque no he utilizado un software	pensando que son
Diferenciales		dificiles, y los otros
después de		que comentan el
haberla cursado?	después de tomar un curso me di cuenta que no fue	cambio de postura.
	tan dificil"	
	si está muy difícil	
	• sí, porque no tenía el conocimiento de que se trataba	
¿Cuáles son los libros que utilizaste?	"ecuaciones diferenciales Isabel Carmona"	Depende de la
	• ninguno solo internet	materia en que
	• folleto elaborado por el profesor	aplican los
	Dennis Zill Ecuaciones diferenciales	conocimientos de
	Dennis Zili Ecuaciones unerenciales	las ED.
		Into ED.

		Examen 100%
¿Cómo te	Examen, Tareas, Participación	Tareas 55%
evaluaban?	Examen, Participación	Proyecto 8%
	Proyecto	Exposición 12%
		Participación 36%
¿Qué piensas acerca de utilizar software para resolver las ecuaciones diferenciales?	 nunca lo utilizamos, pero me imagino que facilita el aprendizaje. de gran utilidad, solo que antes se debe saber cómo interpretar los resultados sería una forma más fácil de resolver los diferentes tipo de ecuaciones 	El software con motivos educativos es poco utilizado.

Tabla 4. Análisis de los argumentos presentaos por los estudiantes.

CONCLUSIONES

El análisis de los argumentos nos proporcionan la RS que los profesores poseen acerca de la enseñanza de las ecuaciones diferenciales: esta se muestra como difícil por la falta de interés de los estudiantes, malos hábitos de estudio, escasos conocimientos de álgebra, aunado a que la práctica docente no ha variado significativamente con el paso de los años, los profesores prefieren la enseñanza tradicional a innovar, se deja ver por la bibliografía utilizada, algunos utilizan la misma que cuando eran estudiantes, y en cuanto a la enseñanza basada en competencias, aún no está claro el proceso.

Al enseñar los conceptos las explicaciones prácticas relacionadas con la carrera de ingeniería. Siguen una metodología tradicional con argumentos físicos o geométricos, son pocos los que utilizan otros medios para evaluar además del examen. Sus representaciones sociales están fuertemente influenciadas por su propio proceso de aprendizaje, aun cuando son de diferentes carreras realizan las mismas prácticas.

Por el lado de los estudiantes, las respuestas dadas presentan descripciones y argumentos que determinan el estudio. Para obtener un discurso argumentado, se redactaron preguntas en las que los estudiantes pudieran expresar lo que para ellos es la enseñanza de las ED en el nivel de ingeniería y las dificultades que enfrentan durante el proceso. Las cuales son concebidas como complicadas aunado a la ausencia de bases teóricas.

Los resultados demuestran la necesidad de implementar estrategias que apoyen en la adquisición de los conocimientos previos a esta asignatura además de técnicas de estudio por parte de los estudiantes y la inclusión de problemas prácticos para que se perciba la importancia de la aplicación de las ED en la solución de problemas acordes a cada carrera. Por ello se propone un curso remedial de álgebra durante el primer semestre de las carrera, lo que apoyará no sólo a la asignatura de ED, sino a las relacionadas con ciencias básicas.

En base a lo anterior, se sugiere un curso o seminario para los profesores, donde se diseñen estrategias didácticas de acuerdo al tipo de especialidad en que se imparta la materia.

BIBLIOGRAFÍA

- Abric, J. C. (1994). Pratiques sociales et représentations. Paris: PUF
- Camacho, A (2006). Socioepistemología y prácticas sociales. México, *Revista de Educación Matemática* 18(1), Santillana Editores, pp.133 a 160.
- Camacho, A., y Sánchez, B.I. (2008), Social practice of the variability notion. An epistemological approach. Documento presentado en The International Study Group on the Relations between the History and Pedagogy of Mathematics. Ciudad de México.
- Dollo, Ch. (2003). "Quels déterminants pour l'évolution des savoirs scolaires en Sciences

 Economiques et Sociales?" (L'exemple du chômage). Tesis de doctorado. U. de Provence,

 Francia,
- Fil, Ch., Amade-Escot, Ch., Genet-Volet, Y. (S.F.) Mise en oeuvre des programmes par les enseignants: le cas du badminton au quebec et en france. Consultada por Internet el 20 de junio de 2010. En http://www.unice.fr/ufrstaps/colloque_antibes/Fil/Fil2.htm
- Grize, J.B. (1993). Logique naturelle et representations socials. Papers on Social Representations,
 2, pp. 151-159. Versión electrónica http://www.psr.jku.at/. Recuperado el 10 de enero de 2010.
- Jo delet, D. (1986). "La representación social: fenómenos, concepto y teoría". En S. Moscovici (Ed.).
 Psicología Social II: Pensamiento y vida social (pp 469-494). Barcelona: Paidós.
- Mingüer, L. (2006). Entorno Sociocultural y cultura matemática en profesores de nivel superior de educación. Estudio de caso: el Instituto Tecnológico de Oaxaca: Una aproximación socioepistemológica. Tesis de doctorado no publicada. CICATA-IPN, México.
- Moscovici, S. (1985). Psicología Social I y II. Paidós. Barcelona España.
- Moscovici, S. y Hewstone, M. (1986). "De la ciencia al sentido común". En S. Moscovici (Ed.). Psicología Social II: Pensamiento y vida social (pp. 679-710). Barcelona: Paidós.
- Sánchez, B. I., y Camacho, A (2011). Función matemática. El concepto entre los docentes a través de representaciones sociales. Editorial Académica Española.